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Abstract. The structure, thermodynamics and the ferromagnetic phase transition of a positionally frozen
disordered Heisenberg spin system are studied by means of extensive Monte Carlo calculations in combina-
tion with finite size scaling techniques, as well as resorting to the Replica Ornstein-Zernike formalism. The
system is formed by a collection of Heisenberg spins whose spatial distribution corresponds to a soft sphere
fluid with its particle positions frozen at a certain quench temperature. The spin orientations are allowed
to equilibrate at a given equilibrium temperature. If the quench and equilibrium temperatures are similar
the properties of the positionally frozen system are practically indistinguishable from those of the fully
equilibrated Heisenberg spin fluid. On the other hand, one observes that as the quenching temperature
of the spatial degrees of freedom increases, so does the Curie temperature of the Heisenberg spins. The
theory fails to reproduce the location of the ferromagnetic transition, despite its relative accuracy in the
determination of the orientational structure in the supercritical region.

PACS. 75.50.Lk Spin glasses and other random magnets – 64.60.Fr Equilibrium properties near critical
points

1 Introduction

The effects of quenching the translational degrees of free-
dom on the ferromagnetic transition in dipolar fluids have
been the focus of various works in recent years [1–4].
Both simulation techniques [1,3], mean field theory [2] and
quite recently the Replica Ornstein Zernike (ROZ) inte-
gral equation theory [4] have been applied to elucidate
the changes induced in the orientational order transition
in dipolar fluids by the freezing of the particle positions. In
a related work, the authors focused on the ferromagnetic
transition of a positionally frozen hard sphere Heisenberg
spin system [5]. In reference [5] it was found that the crit-
ical behavior is hardly affected by the quenching of the
particle positions. Moreover, since in this case the spatial
distribution is entirely determined by the hard core repul-
sions, the ferromagnetic transition cannot be correlated
with the temperature at which the particle positions are
quenched.

In this work we will focus on a soft core Heisenberg
system which quite recently [6] has also being the subject
of investigation in the fully equilibrated –i.e. spin fluid –
case. The spin-spin interaction in this model is defined by

U(r12, ω1, ω2) = −J(r12)(s1 · s2) (1)
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with the spin-spin exchange coupling given by

J(r) = ε
σ

r
exp[(σ − r)/σ],

and being si the unit vector that describes the orientation
of the spin i. Here ε is always positive, favoring ferromag-
netic alignment.

For practical purposes J(r) is truncated and shifted
at R = 2.5σ, so that J(r) = 0 for r ≥ R. The spatial
distribution of the spins corresponds to that of a frozen
soft sphere fluid interacting via

ψsoft(r) = 4ε
[(σ
r

)12

−
(σ
r

)6
]

+ ε, if r < 21/6σ

and ψsoft(r) = 0 otherwise, being σ and ε the range and
energy parameters of this potential. Now, in the present
instance the spatial distribution of the spins will be defined
by quenching the positions of this soft sphere fluid inter-
acting via ψsoft(r) at a quench temperature T ∗

0 = kBT0/ε.
As a matter of fact, in the case of Heisenberg interactions,
the spatial distribution is hardly sensitive to the spin-spin
correlations for temperatures as low as the Curie point.
One might envisage then the situation depicted here as
the effect of quenching the particle positions on the spin
fluid itself.

We will investigate here how the quenching tempera-
ture affects the ferromagnetic transition resorting to an
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extensive Monte Carlo study, using a combination of clus-
ter and individual particle moves – i.e. spin flips – over
a significantly large number of spatial configurations [5].
For this purpose we will here consider spatial distributions
corresponding to a soft sphere fluid at a reduced density
ρσ3 = 0.6 and high (T ∗

0 = 100), and low (T ∗
0 = 2.1) tem-

peratures. This latter temperature lies close to the Curie
point of the corresponding fully equilibrated system. A
comparison with the spin fluid results recently presented
by Mryglod, Omelyan and Folk [6], will also show here
that, as in the hard sphere case of reference [5], the ef-
fect of freezing the particle positions is practically negli-
gible. This will not be necessarily so in other systems in
which the addition of constrains –such as the freezing of
the translational degrees of freedom– might even induce
a change in the universality class governing the critical
behaviour. This and related issues have been discussed in
connection with a Heisenberg system by Kyriakidis and
Geldart [7] and Mryglod and Folk [8].

In parallel with the computer simulation study we have
also solved the ROZ equations in the Hypernetted Chain
(HNC) approximation for this system, which are nothing
but a particular case of those equations formulated by
Klapp and Patey [4] for positionally frozen dipolar sys-
tems. We will see that these equations can accurately re-
produce the microscopic structure and internal energy of
this model for states away from the ferromagnetic tran-
sition, but tend to overestimate by far the Curie temper-
ature. This is in marked contrast with the corresponding
HNC equation for the spin fluid, which provides reason-
ably accurate transition temperatures [9].

The rest of the paper is organized as follows. In the
next Section we introduce the ROZ equations for the po-
sitionally frozen Heisenberg system. Details of the simu-
lations are presented in Section 3. Finally in Section 4 we
present our most significant results and conclusions.

2 The replica Ornstein-Zernike formalism

Following Klapp and Patey [4], the application of the
replica trick [10] to a system like ours, in which
the orientational degrees are allowed to equilibrate and
the particle positions are frozen, reduces to considering
the s −→ 0 limit of a fully equilibrated system composed
of soft spheres with embedded s replicas of the spins, such
that its Hamiltonian reads

Hrep =
β0

β

∑
i>j

ψsoft(rij) +
s∑

α=1

∑
i>j

J(rij)(sα
i · sα

j ), (2)

where β = 1/kBT and β0 = 1/kBT0, being T0 and T
the temperature at which the particle positions have been
frozen, and the equilibrium temperature of the spins, re-
spectively. Note that according to equation (2) only repli-
cas of the same family, α, interact.

The Ornstein-Zernike equation in Fourier space for this
replicated system reads

h̃rep(12) = c̃rep(12) + ρ

∫
c̃rep(13)h̃rep(32)d{ω3} (3)

where d{ω3} = dω1
3 . . . dω

s
3 denotes the integration over

the orientations of the s replicas of the spin in particle 3,
ρ is the number density, and h̃rep and c̃rep the Fourier
transforms of the total and direct correlation functions
respectively. Given the symmetry of the interaction (1) the
replicated functions can simply be expanded in Legendre
polynomials to get

f rep(12) =
∑
αβ

∑
l

fαβ
l (r)Pl

(
cos θαβ

12

)
(4)

where the fαβ
0 (r) = f0(r)/s2, and in general

fαβ
l (r) =

2l+ 1
2

∫
d cos θαβ

12 f
rep(12)Pl

(
cos θαβ

12

)
. (5)

Now, inserting (4) in equation (3) and taking the limit
s −→ 0, the ROZ equations read

h̃0 = c̃0 + ρc̃0h̃0 (6)

h̃f
l = c̃fl +

ρ

2l + 1

[
c̃fl h̃

f
l − c̃bl h̃

b
l

]
(7)

h̃b
l = c̃bl +

ρ

2l+ 1

[
c̃fl h̃

b
l + c̃bl h̃

f
l − 2c̃fl h̃

f
l

]
(8)

where l �= 0, and

f b
l (r) = lim

s−→0
fαβ

l (r) if α �= β

ff
l (r) = lim

s−→0
fαα

l (r).

As usual, we can define the connected functions by f c =
ff − f b, by which the last two equations for l �= 0 can be
rewritten as

h̃f
l = c̃fl +

ρ

2l + 1
[c̃cl h̃

f
l + c̃bl h̃

c
l ] (9)

h̃c
l = c̃cc +

ρ

2l + 1
c̃cl h̃

c
c. (10)

These equations are just a particular case of those derived
by Klapp and Patey [4], as can easily be seen from equa-
tion (21) of reference [4] if one recalls that for the symme-
try of the Heisenberg interaction the rotational invariant
coefficients and the Legendre expansion coefficients are
simply related by f ll0 = fl. Note also that here we have
neglected the local order parameters since this type of sep-
arable interactions are not likely to produce freezing of the
spin axes.

As to the closure relation, here we will focus on the
HNC approximation, which reads

crep(12) = hrep(12) − log[hrep(12) + 1] − βurep(12) (11)

where according to (2)

βurep(12) = β0ψsoft(r12) + β
∑
α

J(r12)(sα
1 · sα

2 ). (12)

The s −→ 0 limit of (11) can be obtained if one uses
the following form of the HNC closure [11], expanded in
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Legendre’s polynomials

cαβ
l (r) = −βuαβ

l (r) −
∫ ∞

r

dr′
∫
d{ω1

4π
}d{ω2

4π
}hrep

× ∂Xrep(12)
∂r′

Pl(cos θαβ
12 ) (13)

where Xrep(12) = hrep(12) − crep(12) − βurep(12). This
expression, after the replica limit is taken reads

c0(r) = −β0u0(r) −
∫ ∞

r

dr′h0(r′)
∂X0(r′)
∂r′

(14)

cfl (r) = −βul(r) − (2l+ 1)
∑
λλ′

(
λ λ′ l
0 0 0

)2

×
∫ ∞

r

dr′hf
λ(r′)

∂Xb
λ′(r′)
∂r′

(15)

cbl (r) = −(2l+ 1)
∑
λλ′

(
λ λ′ l
0 0 0

)2

×
∫ ∞

r

dr′hb
λ(r′)

∂Xb
λ′(r′)
∂r′

(16)

where the quantities in brackets are the 3−j Wigner sym-
bols, u0(r) = ψsoft(r) and u1(r) = J(r) (with ul = 0 for
l > 1.) From equations (16) and (6–8) it turns out that
hb

l = cbl = 0 when l �= 0 (and hf
0 = hb

0 = h0 by definition).
With this, the equations can be recast in a form more
suitable for our purposes

h0(r) = exp[−β0u0(r) + s0(r)] − 1 (17)

hf
l (r) =

2l + 1
2

∫
d cos θPl(cos θ)(h0(r) + 1)

× exp

[∑
l′=1

(−βul′(r) + sf
l′(r))Pl′ (cos θ)

]
(18)

where, as usual, s = h − c, and equation (18) holds for
l > 0. Equation (6) can be solved coupled with (17) and
this gives the spatial distribution of the soft sphere fluid
at the quenching inverse temperature β0. Equations (7)
and (18) will describe the orientational structure of the
spins at the equilibrium inverse temperature β.

3 Simulation details

We have performed simulations using a combination of a
local update algorithm with a cluster algorithm as per-
formed in reference [5]. The local update algorithm is tai-
lored so as to directly generate configurations (i.e. spin
orientations) within the canonical ensemble. As to the
cluster algorithm, it is essentially based on the method
of Swendsen and Wang [12].

In our particular case, we have to generate a given spa-
tial distribution of the spins, using a canonical simulation
of a system interacting via ψsoft(r) at a reduced quench
temperature T ∗

0 = kT0/ε and perform a given number of

local updates and cluster moves. After the thermal aver-
age one has to average over topological disorder and the
accuracy of the results depends on both factors. For a
reduced quench temperature T ∗

0 = 2.1 we performed cal-
culations using 55 independent spatial configuration, with
thermal averages carried out along 105 moves, after 5×104

equilibration orientational moves. Each orientational move
implies N local spin updates (where N is the number of
particles) and a cluster move. The results obtained were
compared with those of a simulation in which disorder av-
erages were performed over 200 configurations and ther-
mal averages over 103 orientational moves preceded by 103

equilibration moves. We found out that the results were
indistinguishable within the error bars. Actually, another
simulation run using only one tenth of these orientational
moves produced results that deviate a mere 0.2% in the
critical temperature. Consequently, all results presented in
what follows correspond to the simulation that uses 200
configurations and 2 × 103 orientational moves of which
the first half correspond to the equilibration period.

From the simulation results it is possible to perform a
finite size scaling (FSS) analysis, for which it is necessary
to evaluate Binder’s cumulant [13]

U4 = 1 − 〈m4〉
3〈m2〉2 , (19)

where the magnetization per particle is defined by

m =
1
N

∣∣∣∣∣∣
N∑
j

si

∣∣∣∣∣∣ .

Binder’s parameter must be calculated for various sam-
ple sizes in order to perform the FSS analysis. Here we
have considered samples of 256, 500, 864, 1372 and 4000
particles. Plotting U4 vs. the equilibrium T ∗ = kBT/ε for
various sample sizes, the crossing of the U4 curves deter-
mines the location of the critical temperature, T ∗

c . Since
simulations were run only for a reduced number of temper-
atures around T ∗

c , we applied the histogram reweighting
technique to interpolate between the simulated tempera-
tures [14].

As in reference [5], the FSS analysis can also be applied
to a quantity like the percolation fraction, φ, defined as
the fraction of configurations in which there is at least
one Swendsen-Wang cluster that percolates through the
periodic system. Note however, that since the cluster def-
inition depends on the temperature, one cannot make use
of the histogram reweighting technique in this case. There-
fore, here we have resorted to a simple mathematical inter-
polation procedure. Since polynomial fittings introduced
undesired features on the interpolated results, we used a
function of the type

φ = a0(1 − tanh[a1(T ∗ − a2)]) + a3,

where the four ai’s were determined to fit the values of
φ for the various temperatures around T ∗

c at which the
simulations were run.
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Fig. 1. Leading coefficients of the pair distribution function
of the positionally frozen Heisenberg spin system at two tem-
peratures. a) Radial distribution function, g0(r) = h0(r) + 1,
corresponding to a soft sphere fluid quenched at T ∗

0 = 100 b)
hf

1 (r) coefficient of the spin-spin pair distribution function at
T ∗ = 3.2 c) same as b) at T ∗ = 4.0. The inset in Figure a) illus-
trates the two radial distribution functions of the soft sphere
fluid quenched at high and low temperatures.

4 Results

As a preliminary study, we have reproduced one of the spin
fluid calculations carried out in reference [6], namely the
state at density ρσ3 = 0.6, for which Mryglod and cowork-
ers obtained a critical temperature T ∗

c = 2.054 ± 0.001
with a critical Uu = 0.619 ± 0.002. Our calculations us-
ing only 1372 and 2048 particle samples, yield an estimate
of T ∗

c = 2.059 with U4 = 0.615 using Binder’s cumulant
analysis and T ∗

c = 2.054 from the analysis of the percola-
tion fraction. The agreement is sufficiently satisfactory to
conclude that the simulation procedure is reliable. For this
ferromagnetic transition, the HNC approximation predicts
a critical temperature T ∗

c = 2.187, which overestimates
the simulation results by a 6%.

Figure 1 illustrates the ability of the ROZ-HNC ap-
proximation to capture the orientational structure of the
positionally frozen spin system. The spatial distribution
of the spins corresponds to quenched configurations of a
soft sphere fluid at T ∗

0 = 100 and ρσ3 = 0.6. It is eas-
ily appreciated that the structure is rather well repro-

2.00 2.10 2.20 2.30

T
*

0.45

0.50

0.55

0.60

0.65

U
4

256
500
864
1372
4000

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

φ

T
*

0
=100.0

Fig. 2. Evolution of Binder’s cumulant, U4, and percolation
fraction,φ, with temperature and system size for a positionally
frozen Heisenberg system with the spatial distribution of a soft
sphere fluid quenched at T ∗

0 = 100.0.

duced at high temperatures. As the temperature is low-
ered the ROZ angular correlation becomes somewhat more
long ranged. Now, if the temperature is further lowered
the integral equation breaks down and predicts a ferro-
magnetic transition at T ∗

ns = 2.826 well above the Curie
temperature of the spin fluid at the same density. This
can be understood if one realizes that particles can be
much closer (and consequently angular correlations much
stronger) when the spatial distribution corresponds to a
high temperature system–compare the high and low tem-
perature distribution functions in the inset of Figure 1a.
When one uses a g0(r) obtained by quenching the soft
sphere fluid at T ∗

0 = 2.1, the ROZ-HNC equation breaks
down at T ∗

ns = 2.42, which is well above the Curie tem-
perature of the fluid but below the non-solution tempera-
ture for the high temperature quench. In any case, we will
see that the ROZ overestimates the Curie temperature
for both positionally frozen systems and this is in clear
contrast with the reasonable estimates obtained for the
spin fluid in the HNC approximation. In fact, already at
T ∗ = 3.2 the ROZ hf

1 (r) can be seen to decay more slowly
than its simulated counterpart and it is then not surpris-
ing that this enhanced long ranged angular correlations
induce a transition in the theoretical results in conditions
where the simulation still yields a fully isotropic system.
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Table 1. Critical parameters of positionally frozen Heisenberg systems corresponding to spatial distributions from a soft sphere
fluid quenched at high and low temperature. The various critical temperature estimates are obtained from different sources as
indicated in the text and in the table with the symbols in parenthesis. The spin fluid FSS results are from reference [6] and the
corresponding non-solution T ∗

ns is obtained in the HNC approximation.

T ∗
0 T ∗

c (U4) T ∗
c (φ) T ∗

c (mc) U4 γ/ν(χ) γ/ν(β/ν) β/ν T ∗
ns

100.0 2.196(3) 2.189(2) 2.193(2) 0.618(2) 1.93(2) 1.98(8) 0.51(4) 2.826
2.1 2.050(6) 2.042(4) 2.050(3) 0.617(2) 1.92(2) 1.96(8) 0.52(4) 2.420

spin fluid 2.054(2) – 2.057 0.619(2) 1.90(3) 1.92(4) 0.54(2) 2.187
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Fig. 3. Evolution of Binder’s cumulant, U4, and percolation
fraction,φ, with temperature and system size for a positionally
frozen Heisenberg system with the spatial distribution of a soft
sphere fluid quenched at T ∗

0 = 2.1.

As to the internal energy, for T ∗ = 4.0 the integral
equation predicts a value U/NkBT = −0.075 in good
agreement with the MC value −0.073. Larger discrepan-
cies are found as the temperature is lowered, and thus for
T ∗ = 3.2 the ROZ result is U/NkBT = −0.142 in contrast
with the MC value −0.131.

Let us now focus on the analysis of the simulation re-
sults for the two quenched systems under consideration.
In Figure 2 we present the evolution of Binder’s cumulant,
U4, and the percolation fraction, φ, for various system sizes
when the spatial distribution of the spins corresponds to
the high temperature quench, T ∗

0 = 100. Following ref-
erence [15] we fit the temperatures at the intersection
of the 256 and 512 curves with the remaining curves to
Ti(b) = T ∗

c + c/ log b where b = (N/256)1/3 for the 256

curve intersections and b = (N/512)1/3 for the 512 case.
The T ∗

c values resulting from both fits agree within sta-
tistical accuracy. This comes to suggest that the linear fit
is adequate, despite the fact that non-linear corrections
should be added when b − 1 is not small [13], which is
the case here for some sample sizes. The use of the linear
fit in similar situations is common practice in the litera-
ture [15–17].

The results obtained from U4 and φ are collected in
Table 1, and tell us that the critical temperature of this
frozen system is somewhat above that of the spin fluid
system (2.059), but well below the ROZ predictions. Ad-
ditionally, one can also obtain an estimate of the critical
temperature from the system size dependence of the crit-
ical magnetization mc, which is know to scale as mc ∝
L−β/ν, with β and ν the magnetization and correlation
length exponents respectively [13]. Again in Table 1 we
find the results from this analysis to be in good agreement
with the U4 and φ estimates of T ∗

c . The critical exponent
γ/ν is determined from a fit of the magnetic susceptibility
χ = L3(〈m2〉 − 〈m〉2))/kBT , since its maxima scale with
sample since as χm ∝ Lγ/ν. The result of the fit is denoted
in Table 1 by γ/ν(χ). If one calculates γ/ν = 3 − 2(β/ν)
one obtains the value shown in Table 1 under γ/ν(β/ν),
which agrees with the result of the fit within the error
bars.

A similar analysis carried out for the low temperature
quench, T ∗

0 = 2.1 leads to the results of the second row
of Table 1. Now one sees that the critical temperature is
somewhat lower and other critical parameters are inde-
pendent of the quenching temperature. The critical tem-
perature is in fact nearly identical to that of the spin fluid,
which is an indication that the quenching of particle po-
sitions in this case of separable angular interactions does
not affect the critical behavior, as was also found for the
hard sphere Heisenberg system in reference [5]. Aside from
T ∗

c , the critical parameters for both spatial distributions
agree with those reported by Mryglod and coworkers [6]
for the spin fluid. As to the ROZ critical temperatures, we
may remark one last point. Despite its overestimation of
the Curie temperature, the theory reproduces the correct
qualitative trend in the dependence of T ∗

c with the topol-
ogy, namely, the high temperature quench has a higher
Curie temperature both in the simulation results and in
the ROZ calculations.

In summary, we have seen that the ROZ-HNC ap-
proximation reproduces with reasonable accuracy the
structure of the positionally frozen Heisenberg system at



478 The European Physical Journal B

temperatures above the ferromagnetic transition, repro-
duces qualitatively the increase in the Curie temperature
associated with the rise in the quenching temperature, but
clearly overestimates the transition temperatures. This
overestimation is in part due to what can be considered
the main deficiency of the ROZ-HNC approximation in
this system: whereas the simulation clearly indicates that
freezing the particle positions does not alter the critical
temperature, the ROZ results show a substantial increase
in T ∗

c . As to the simulation results, one can conclude that,
aside from the critical temperature, the remaining critical
parameters of the positionally frozen Heisenberg system
are practically indistinguishable from those obtained for
the Heisenberg spin fluid.
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BFM2001-1017-C03-01 (EL and CM), and No. MAT2002-
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